

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

### Theoretical Explanations of the *g* Factors for Ni<sup>3+</sup> Ions in KMgF<sub>3</sub> and CsCaF<sub>3</sub> Crystals

Lv He<sup>ab</sup>; Wenchen Zheng<sup>ac</sup>; Shunru Zhang<sup>a</sup>

<sup>a</sup> Department of Material Science, Sichuan University, Chengdu, P.R. China <sup>b</sup> Department of Physics, Zhejiang Normal University, Jinhua, P.R. China <sup>c</sup> International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang, P.R. China

Online publication date: 19 January 2010

**To cite this Article** He, Lv , Zheng, Wenchen and Zhang, Shunru(2010) 'Theoretical Explanations of the *g* Factors for Ni<sup>3+</sup> Ions in KMgF<sub>3</sub> and CsCaF<sub>3</sub> Crystals', Spectroscopy Letters, 43: 1, 1 — 4

**To link to this Article:** DOI: 10.1080/00387010903278200

**URL:** <http://dx.doi.org/10.1080/00387010903278200>

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

# Theoretical Explanations of the *g* Factors for Ni<sup>3+</sup> Ions in KMgF<sub>3</sub> and CsCaF<sub>3</sub> Crystals

Lv He<sup>1,2</sup>,  
Wenchen Zheng<sup>1,3</sup>,  
and Shunru Zhang<sup>1</sup>

<sup>1</sup>Department of Material Science, Sichuan University, Chengdu, P.R. China

<sup>2</sup>Department of Physics, Zhejiang Normal University, Jinhua, P.R. China

<sup>3</sup>International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang, P.R. China

**ABSTRACT** By using the optical spectral parameters of (NiF<sub>6</sub>)<sup>3-</sup> clusters in KMgF<sub>3</sub>:Ni<sup>3+</sup> and CsCaF<sub>3</sub>:Ni<sup>3+</sup> crystals estimated from the observed values in pure K<sub>3</sub>NiF<sub>6</sub> crystal, the electron paramagnetic resonance (EPR) *g* factors for KMgF<sub>3</sub>:Ni<sup>3+</sup> and CsCaF<sub>3</sub>:Ni<sup>3+</sup> are calculated from the second-order perturbation formula (with the high-spin ground orbital state) based on the cluster approach. The results are in reasonable agreement with the observed values. The spin transition from the low-spin state in pure K<sub>3</sub>NiF<sub>6</sub> crystal to the high-spin state in KMgF<sub>3</sub>:Ni<sup>3+</sup> and CsCaF<sub>3</sub>:Ni<sup>3+</sup> crystals owing to the slight increase of Ni<sup>3+</sup> – F<sup>-</sup> distance is discussed.

**KEYWORDS** crystal- and ligand-field theory, CsCaF<sub>3</sub>, electron paramagnetic resonance, KMgF<sub>3</sub>, Ni<sup>3+</sup>, spin transition

## INTRODUCTION

In crystal theory, according to the Tanabe-Sugano diagram,<sup>[1]</sup> the ground orbital state (which is related to optical spectra) for some 3d<sup>n</sup> ions in crystals depends upon the ratio  $|Dq/B|$  (where  $Dq$  is the cubic field parameter and  $B$  is the Racah parameter).<sup>[1-3]</sup> For example, for 3d<sup>7</sup> ions in octahedral clusters, when  $|Dq/B| > 2.2$ , the ground orbital state is the low-spin ( $S = 1/2$ ) state  $^2E$ .<sup>[1,2]</sup> In this strong field case, the average EPR  $\bar{g}$  factor is close to 2.<sup>[3,4]</sup> Whereas if  $|Dq/B| < 2.2$ , the ground orbital state should be the high-spin ( $S = 3/2$ ) state  $^4T_1(F)$ ;<sup>[1,2]</sup> the  $\bar{g}$  factor in this weak field case is close to 13/3 ( $\approx 4.33$ ).<sup>[3,4]</sup> For an (NiF<sub>6</sub>)<sup>3-</sup> cluster in pure K<sub>3</sub>NiF<sub>6</sub> crystal, the optical spectra studies suggested that  $Dq \approx -1620 \text{ cm}^{-1}$ ,  $B \approx 703 \text{ cm}^{-1}$ , and so  $|Dq/B| \approx 2.3$ .<sup>[5]</sup> Thus, its ground orbital state is the low-spin  $^2E$ .<sup>[5]</sup> This point was supported by the EPR experiments for (NiF<sub>6</sub>)<sup>3-</sup> clusters in the pure crystals K<sub>3</sub>NiF<sub>6</sub>, Na<sub>3</sub>NiF<sub>6</sub>, Cs<sub>2</sub>NaNiF<sub>6</sub>, Cs<sub>2</sub>KNiF<sub>6</sub>, and Rb<sub>2</sub>KNiF<sub>6</sub>.<sup>[6]</sup> Considering that the cubic field parameter  $Dq$  decreases by the relation  $Dq \propto R^{-n}$  (where  $n \approx 3.5 \sim 6.5$ <sup>[7,8]</sup>), and the Racah parameter  $B$  increases slightly with the increasing metal-ligand (e.g., Ni<sup>3+</sup> – F<sup>-</sup> here) distance  $R$  because of the decreasing covalence reduction effect,<sup>[9,10]</sup> the value of  $|Dq/B|$  for the (NiF<sub>6</sub>)<sup>3-</sup> clusters should decrease with the increase of distance  $R$  and may be smaller than 2.2 in some systems. Thus, the ground orbital state changes from the low-spin to high-spin state. For Ni<sup>3+</sup> in cubic perovskites KMgF<sub>3</sub> and CsCaF<sub>3</sub>, since the ionic radii  $r_b$  of the replaced host ions Mg<sup>2+</sup> ( $r_b \approx 0.86 \text{ \AA}$ <sup>[11]</sup>) and Ca<sup>2+</sup> ( $r_b \approx 1.14 \text{ \AA}$ <sup>[11]</sup>) are larger than the radius

Received 9 December 2008;  
accepted 23 April 2009.

Address correspondence to  
Wenchen Zheng, Department of  
Material Science, Sichuan University,  
Chengdu 610064, P.R. China. E-mail:  
zhengwc1@163.com

$r$  ( $\approx 0.74 \text{ \AA}$  in the high-spin state<sup>[11]</sup>) of the impurity  $\text{Ni}^{3+}$ , the  $\text{Ni}^{3+} - \text{F}^-$  distance  $R$  in the two crystals should be larger than that in the pure crystal. Thus, the values of  $|Dq/B|$  may be smaller than 2.2, and the ground state may be of high spin. The observed EPR  $g$  factors for  $\text{Ni}^{3+}$  in both crystals<sup>[12,13]</sup> support this point. No theoretical calculations for these  $g$  factors of  $\text{Ni}^{3+}$  in  $\text{KMgF}_3$  and  $\text{CsCaF}_3$  crystals were made. In this article, these  $g$  factors are calculated from the second-order perturbation formulas based on the cluster approach. In the calculations, the optical spectra parameters ( $Dq$  and  $B$ ) are estimated reasonably from those observed in pure  $\text{K}_3\text{NiF}_6$  crystals and the above rules related to optical spectral parameters  $Dq$ ,  $B$ , and metal-ligand distance  $R$ . The results are discussed.

## CALCULATION

For  $3d^7$  ions in a weak octahedral crystal field, the ground orbital state  ${}^4\text{T}_1(\text{F})$  splits into three Kramers doublets ( $J' = 5/2, 3/2$ , and  $1/2$ ). The lowest Kramers doublet is  $|\pm 1/2\rangle$ .<sup>[4]</sup> Thus, considering the covalency effect in  $3d^n$  clusters, the second-order perturbation formula of a  $g$  factor based on the cluster approach for  $3d^7$  ions in cubic crystals can be expressed as<sup>[14]</sup>

$$g = \frac{10}{3} + \frac{2}{3}k\alpha + \frac{5k'\zeta'\varepsilon^2}{2\Delta_F}, \quad (1)$$

where  $k$  and  $k'$  are the orbital reduction factors.  $\zeta'$  (and  $\zeta$ ) are the spin-orbit (SO) coupling parameters.  $\Delta_F$  is the energy separation between the excited state  ${}^4\text{T}_2(\text{F})$  and the ground state  ${}^4\text{T}_1(\text{F})$ , which can be calculated from the optical spectra parameters.  $\alpha$  is the effective Lande factor and reads

$$\alpha = \frac{3}{2}\varepsilon^2 - \tau^2, \quad (2)$$

in which the parameters  $\varepsilon$  and  $\tau$  are related to the interaction (or admixture) between  ${}^4\text{T}_1(\text{P})$  and  ${}^4\text{T}_1(\text{F})$  and can be obtained from the optical spectra parameters by using the relationships<sup>[14]</sup>

$$\varepsilon^2 + \tau^2 = 1, \quad \frac{\tau}{\varepsilon} = \frac{-4Dq}{15B - 6Dq}. \quad (3)$$

According to the cluster approach, the parameters  $\zeta$ ,  $\zeta'$ ,  $k$ , and  $k'$  can be written as<sup>[14,15]</sup>

$$\begin{aligned} \zeta &= N_t(\zeta_d^0 + \lambda_t^2 \zeta_p^0/2), \\ \zeta' &= \sqrt{N_t N_e}(\zeta_d^0 + \lambda_t^2 \zeta_p^0/2), \\ k &= N_t[1 - 2\lambda_t S_{dp}(t_{2g}) + \lambda_t^2/2], \\ k' &= \sqrt{N_t N_e}[1 - \lambda_t S_{dp}(t_{2g}) - \lambda_e S_{dp}(e_g) - \lambda_t \lambda_e/2], \end{aligned} \quad (4)$$

where  $\zeta_d^0$  and  $\zeta_p^0$  are, respectively, the SO coupling parameter of free  $3d^n$  ion and that of free ligand ion. For the  $(\text{NiF}_6)^{3-}$  clusters under study,  $\zeta_d^0(\text{Ni}^{3+}) \approx 749 \text{ cm}^{-1}$ ,<sup>[16]</sup>  $\zeta_p^0(\text{F}^-) \approx 220 \text{ cm}^{-1}$ ,<sup>[17]</sup>  $S_{dp}(\gamma)$  ( $\gamma = t_{2g}$  or  $e_g$ ) is the group overlap integral.  $N_\gamma$  and  $\lambda_\gamma$  are the normalization coefficient and orbital mixing coefficient in the linear combination of atomic orbitals (LCAO) molecular orbital (MO). They can be obtained from the normalization relation<sup>[14,18]</sup>

$$N_\gamma = [1 - 2\lambda_\gamma S_{dp}(\gamma) + \lambda_\gamma^2]^{-1} \quad (5)$$

and the approximate condition<sup>[14,18]</sup>

$$f_\gamma \approx B/B_0 \text{ (or } C/C_0) \approx N_\gamma^2[1 + \lambda_\gamma^2 S_{dp}^2(\gamma) - 2\lambda_\gamma S_{dp}(\gamma)], \quad (6)$$

where  $B_0$  and  $C_0$  are the Racah parameters of a free  $3d^n$  ion. For the free  $\text{Ni}^{3+}$  ion, we have  $B_0 \approx 1195 \text{ cm}^{-1}$  and  $C_0 \approx 4808 \text{ cm}^{-1}$ .<sup>[16]</sup>

The integral  $S_{dp}(\gamma)$  of a  $3d^n$  cluster can be calculated from the Slater-type self-consistent field (SCF) functions<sup>[19,20]</sup> and the average metal-ligand distance  $R$ . Generally speaking, for  $3d^n$  impurities in crystals, the impurity-ligand distance  $R$  is different from the corresponding distance  $R_H$  in the host crystal because of the size and/or charge mismatch. The impurity-ligand distance  $R$  in crystals can be obtained by analyzing the experimental (e.g., extended x-ray absorption fine structure (EXAFS) and superhyperfine constant experiments<sup>[21]</sup>) data or by using the theoretical calculations (e.g., using the embedded-quantum-cluster approach<sup>[22]</sup> or a lattice relaxation model<sup>[23,24]</sup>). For the studied  $\text{KMgF}_3:\text{Ni}^{3+}$  and  $\text{CsCaF}_3:\text{Ni}^{3+}$  crystals, no such experimental and theoretical studies were done. According to the impurity-ligand distances  $R$  for  $\text{Mn}^{2+}$  in fluoroperovskites derived from the experimental superhyperfine constant  $A_s$ , EXAFS measurements and crystal-field spectrum analysis,<sup>[21]</sup> an approximate formula

$$R \approx R_H + (r_i - r_b)/2 \quad (7)$$

**TABLE 1** Mixing Parameters  $\varepsilon$  and  $\tau$ , MO Coefficients, Orbital Reduction Factors, and SO Coupling Parameters for  $\text{Ni}^{3+}$  in  $\text{KMgF}_3$  and  $\text{CsCaF}_3$  Crystals

|                                 | $\varepsilon$ | $\tau$ | $N_t$  | $N_e$  | $\lambda_t$ | $\lambda_e$ | $k$    | $k'$   | $\zeta'$ |
|---------------------------------|---------------|--------|--------|--------|-------------|-------------|--------|--------|----------|
| $\text{KMgF}_3:\text{Ni}^{3+}$  | 0.9590        | 0.2835 | 0.7728 | 0.7814 | 0.5495      | 0.5564      | 0.8833 | 0.6436 | 604.5    |
| $\text{CsCaF}_3:\text{Ni}^{3+}$ | 0.9634        | 0.2680 | 0.7758 | 0.7825 | 0.5430      | 0.5486      | 0.8856 | 0.6518 | 558.1    |

is suggested in the estimation of the impurity-ligand distance  $R$  in crystals.<sup>[25]</sup> So, it is applied here. From the  $r_b$ ,  $r_b$  given in the Introduction and  $R_H \approx 1.994$  and  $2.262 \text{ \AA}$ <sup>[21]</sup> for  $\text{KMgF}_3$  and  $\text{CsCaF}_3$ , respectively,  $R \approx 1.934$  and  $2.062 \text{ \AA}$  are obtained for  $(\text{NiF}_6)^{3-}$  clusters in  $\text{KMgF}_3:\text{Ni}^{3+}$  and  $\text{CsCaF}_3:\text{Ni}^{3+}$  crystals. Thus, the integrals  $S_{dp}(\gamma)$  can be calculated. They are  $S_{dp}(t_{2g}) \approx 0.00728$ ,  $S_{dp}(e_g) \approx 0.02682$  for  $\text{KMgF}_3:\text{Ni}^{3+}$  and  $S_{dp}(t_{2g}) \approx 0.00547$ ,  $S_{dp}(e_g) \approx 0.02102$  for  $\text{CsCaF}_3:\text{Ni}^{3+}$ .

No optical spectra of  $(\text{NiF}_6)^{3-}$  clusters in  $\text{KMgF}_3:\text{Ni}^{3+}$  and  $\text{CsCaF}_3:\text{Ni}^{3+}$  crystals were reported. We estimate reasonably the optical spectra parameters  $B$ ,  $C$ , and  $Dq$  for both crystals from the optical spectra parameters of  $\text{K}_3\text{NiF}_6$  crystal<sup>[5]</sup> and the rules mentioned in the Introduction. Thus, from the  $\text{Ni}^{3+} - \text{F}^-$  distances  $R$  in  $\text{K}_3\text{NiF}_6$ ,  $\text{KMgF}_3:\text{Ni}^{3+}$ , and  $\text{CsCaF}_3:\text{Ni}^{3+}$  (note: for the pure  $\text{K}_3\text{NiF}_6$ , considering that the metal-ligand distance in pure crystal is very close to the sum of ionic radii, it is taken that  $R \approx 1.89 \text{ \AA}$ , where  $r(\text{Ni}^{3+}) \approx 0.70 \text{ \AA}$  in the low-spin state and  $r(\text{F}^-) \approx 1.19 \text{ \AA}$ <sup>[11]</sup>), we have  $Dq \approx -1410 \text{ cm}^{-1}$ ,  $B \approx 708 \text{ cm}^{-1}$ , and hence,  $f_\gamma \approx 0.5925$  for  $\text{KMgF}_3:\text{Ni}^{3+}$  and  $Dq \approx -1280 \text{ cm}^{-1}$ ,  $B \approx 715 \text{ cm}^{-1}$ , and hence,  $f_\gamma \approx 0.5980$  for  $\text{CsCaF}_3:\text{Ni}^{3+}$ .

By using these optical spectra parameters for  $\text{Ni}^{3+}$  in both crystals, the parameters  $\varepsilon$  and  $\tau$  are calculated from Eq. (3), and the MO coefficients  $N_\gamma$  and  $\lambda_\gamma$  are obtained from Eqs. (5) and (6). Thus, the parameters  $k$ ,  $k'$ , and  $\zeta'$  can be calculated from Eq. (4). These calculated results are shown in Table 1.

Applying the parameters in Table 1 to Eq. (1), the  $g$  factors for  $\text{Ni}^{3+}$  ions in  $\text{KMgF}_3$  and  $\text{CsCaF}_3$  are calculated. They are compared with the observed values in Table 2.

**TABLE 2** EPR  $g$  Factors for  $\text{Ni}^{3+}$  in  $\text{KMgF}_3$  and  $\text{CsCaF}_3$  Crystals

|             | $\text{KMgF}_3:\text{Ni}^{3+}$ | $\text{CsCaF}_3:\text{Ni}^{3+}$ |
|-------------|--------------------------------|---------------------------------|
| Calculation | 4.163                          | 4.186                           |
| Experiment  | 4.163 (1) <sup>a</sup>         | 4.183 <sup>b</sup>              |

<sup>a</sup>Reference 12.

<sup>b</sup>Reference 13.

## DISCUSSION

In the above calculations, one can find that the values  $|Dq/B| \approx 1.99$  and  $1.79$  for  $\text{Ni}^{3+}$  ions in  $\text{KMgF}_3$  and  $\text{CsCaF}_3$  crystals, respectively. Both values are smaller than 2.2, and so the ground orbital state of  $(\text{NiF}_6)^{3-}$  clusters in the two crystals is, as suggested in the Introduction, the high-spin state rather than the low-spin state in  $\text{K}_3\text{NiF}_6$  crystal. So, although there may be small errors in the estimated impurity-ligand distances in  $\text{KMgF}_3:\text{Ni}^{3+}$  and  $\text{CsCaF}_3:\text{Ni}^{3+}$  crystals because of the application of the approximate formula (i.e., Eq. (7)), the optical spectra parameters in the two crystals estimated from those in pure  $\text{K}_3\text{NiF}_6$  crystal, and these distances are suitable. By using these parameters, the  $g$  factors of  $\text{KMgF}_3:\text{Ni}^{3+}$  and  $\text{CsCaF}_3:\text{Ni}^{3+}$  crystals are reasonably explained from the second-order perturbation formula based on the cluster approach for the high-spin  $3d^7$  ions in cubic symmetry (see Table 2).

It should be pointed out that in the crystal-field theory, there are two theoretical methods—the complete diagonalization (of energy matrix) method (CDM)<sup>[26–29]</sup> and the perturbation theory method (PTM),<sup>[26–29]</sup>—in the calculations of spin-Hamiltonian parameters (including  $g$  factors) for  $3d^n$  ions in crystals. Generally speaking, the PTM is simpler, and the CDM can provide more exact calculated results of spin-Hamiltonian parameters because it takes into account the contributions from all  $3d^n$  excited states.<sup>[26,27]</sup> However, for the  $g$  factors of  $3d^n$  ions in crystals, the calculated results from both the CDM and PTM are close to each other.<sup>[26–29]</sup> Recently, a fuller CDM<sup>[27,30]</sup> was developed, in which in addition to the SO interaction in the conventional CDM, the spin-spin (SS) and spin-other-orbit (SOO) interactions are considered in the CDM calculations of spin-Hamiltonian parameters. Even so, the calculations for  $3d^8$  and  $3d^2$  ions in some crystals show that the contributions to  $g$  factors from the SS, SOO, and combined SO-SS-SOO interactions are

small.<sup>[27,30]</sup> So, the calculated *g* factors of  $\text{KMgF}_3:\text{Ni}^{3+}$  and  $\text{CsCaF}_3:\text{Ni}^{3+}$  crystals using the simple PTM can be regarded as reasonable.

## CONCLUSION

The theoretical calculations from the second-order perturbation formula (with the high-spin ground orbital state) based on the cluster approach confirmed that the ground state of the  $(\text{NiF}_6)^{3-}$  clusters in  $\text{KMgF}_3:\text{Ni}^{3+}$  and  $\text{CsCaF}_3:\text{Ni}^{3+}$  crystals is the high-spin  $^4\text{T}_1(\text{F})$  rather than the low-spin  $^2\text{E}$  in  $\text{K}_3\text{NiF}_6$  crystal. This spin transition from the low-spin to the high-spin for  $(\text{NiF}_6)^{3-}$  cluster is due to the slight increase of  $\text{Ni}^{3+} - \text{F}^-$  distance  $R$ .

## REFERENCES

- McClure, D. S. Electronic spectra of molecules and ions in crystals, Part II. Spectra of ions in crystals. *Solid State Phys.* **1959**, *9*, 399–525.
- Lever, A. B. P. *Inorganic Electronic Spectroscopy*; Elsevier Press: Amsterdam, 1984.
- Servant, Y.; Cantin, C.; Kahn, O.; Kliava, J. EPR studies of spin transitions: A review. In *Modern Applications of EPR/ESR from Biophysics to Materials Science (APS' 97, Hong Kong)*; Rudowicz, C.; Yu, K. N.; Hiraoka, H., Eds.; Springer: Singapore, 1997; 346–357.
- Abragam, A.; Bleaney, B. *Electron Paramagnetic Resonance of Transition Ions*; Oxford University Press: London, 1970.
- Allen, G. C.; Warren, K. D. Electronic spectra of the hexafluoroniobate (III), hexafluorocuprate (III), and hexafluoroargentate (III) anions. *Inorg. Chem.* **1969**, *8*, 1895–1901.
- Von Reinen, D.; Friebel, C.; Propach, V. High- and low-spin-verhalten des  $\text{Ni}^{2+}$ -ions in oktaedris koordination (A)  $\text{NiF}_6^{3-}$  polyeder. *Z. anorg. allg. Chem.* **1974**, *408*, 187–204.
- Hernandez, D.; Rodriguez, F.; Moreno, M.; Gudel, H. U. Pressure dependence of the crystal field spectra of the  $\text{NH}_4\text{MnCl}_3$  perovskite: Correlation between 10Dq,  $N_e$  and  $N_t$ , and the Mn-Cl distance in  $\text{MnCl}_6^{4-}$  complexes. *Physica B* **1999**, *265*, 186–190.
- Moreno, M.; Barriuso, M. T.; Aramburu, J. A. The Huang-Rhys factor  $S(a_{1g})$  for transition-metal impurities: A microscopic insight. *J. Phys.: Condens. Matter* **1992**, *4*, 9481–9488.
- Zahner, C.; Drickamer, H. G. Effect of pressure on crystal-field energy and covalency in octahedral complexes of  $\text{Ni}^{2+}$ ,  $\text{Co}^{2+}$ , and  $\text{Mn}^{2+}$ . *J. Chem. Phys.* **1961**, *35*, 1483–1490.
- Luana, V.; Bermejo, M.; Florez, M.; Recio, J. M.; Pueyo, L. Effects of a quantum-mechanical lattice on the electronic structure and d-d spectrum of the  $(\text{MnF}_6)^{4-}$  cluster in  $\text{Mn}^{2+}:\text{KZnF}_3$ . *J. Chem. Phys.* **1989**, *90*, 6409–6421.
- Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distance in halides and chalcogenides. *Acta Cryst. A* **1976**, *32*, 751–767.
- Hall, T. P. P.; Hayes, W.; Stevenson, R. W. H.; Wilkens, J. Investigation of the bonding of iron-group ions in fluoride crystal. II. *J. Chem. Phys.* **1963**, *39*, 35–39.
- Alcaia, R.; Villacampa, B. EPR study of  $\text{Ni}^{3+}$  centers in  $\text{CsCaF}_3$ . *Solid State Commun.* **1994**, *90*, 13–16.
- Wu, S. Y.; Zheng, W. C. Theoretical studies of the *g* factors for  $\text{Co}^{2+}$  in  $\text{MgO}$  and  $\text{CaO}$  crystals. *Z. Naturforsch. A* **2001**, *56*, 249–252.
- Zheng, W. C.; Fan, Y. J.; Wu, X. X. Studies of the EPR parameters and local tetragonal distortion of  $\text{V}^{4+}$ -doped  $\text{SrTiO}_3$  crystal. *Z. Naturforsch. A* **2005**, *60*, 433–436.
- Uylings, P. H. M.; Raassen, A. J. J.; Wyart, J. F. Energies of  $N$  equivalent electrons expressed in terms of two-electron energies and independent three-electron parameters: A new complete set of orthogonal operators: II. Application to  $3d^N$  configurations. *J. Phys. B* **1984**, *17*, 4103–4126.
- Mcpherson, G. L.; Koch, R. C.; Stachy, G. D. Electron spin resonance spectra of  $\text{V}^{2+}$ ,  $\text{Mn}^{2+}$ , and  $\text{Ni}^{2+}$  in single crystals of  $\text{CsMgBr}_3$  and  $\text{CsMgl}_3$ . *J. Chem. Phys.* **1974**, *60*, 1424–1431.
- Du, M. L. Theoretical investigation of the *g* factor in  $\text{RX}:\text{V}^{2+}$  ( $\text{R}=\text{Na, K, Rb; X=Cl, Br}$ ). *Phys. Rev. B* **1992**, *46*, 5274–5279.
- Clementi, E.; Raimondi, D. L. Atomic screening constants from SCF functions. *J. Chem. Phys.* **1963**, *38*, 2686–2689.
- Clementi, E.; Raimondi, D. L.; Reinhardt, W. P. Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons. *J. Chem. Phys.* **1967**, *47*, 1300–1307.
- Moreno, M.; Barriuso, M. T.; Aramburu, J. A. Impurity-ligand distances derived from magnetic resonance and optical parameters. *Appl. Magn., Reson.* **1992**, *3*, 283–304.
- Groh, D. J.; Pandey, R.; Recio, J. M. Embedded-quantum-cluster study of local relaxations and optical properties of  $\text{Cr}^{3+}$  in  $\text{MgO}$ . *Phys. Rev. B* **1994**, *50*, 14860–14866.
- Yueng, Y. Y. Ligand positions and crystal field parameters for  $\text{Cr}^{3+}$  at tetragonal sites in  $\text{MgO}$ . *J. Phys.: Condens. Matter* **1990**, *2*, 2461–2464.
- Choy, T. L.; Yeung, Y. Y. Local distortion and crystal field parameters for  $\text{Cr}^{3+}$  at orthorhombic sites in  $\text{MgO}$ . *Phys. Status Solidi B* **1990**, *161*, K107–K110.
- Zheng, W. C. Local rotation angle in the structural phase transition for the  $\text{Mn}^{2+}$  ion in a  $\text{CsCaCl}_3$  crystal. *Physica B* **1995**, *215*, 255–259.
- Rudowicz, C.; Yeung, Y. Y.; Yang, Z. Y.; Qin, J. Microscopic spin Hamiltonian approaches for  $3d^8$  and  $3d^2$  ions in a trigonal crystal-field-perturbation theory methods versus complete diagonalization methods. *J. Phys.: Condens. Matter* **2002**, *14*, 5619–5636.
- Yang, Z. Y.; Hao, Y.; Rudowicz, C.; Yeung, Y. Y. Theoretical investigations of the microscopic spin Hamiltonian parameters including the spin-spin and spin-other-orbit interactions for  $\text{Ni}^{2+}$  ions in trigonal crystal fields. *J. Phys.: Condens. Matter* **2004**, *16*, 3481–3494.
- Zheng, W. C.; Fang, W. Studies of the defect structures and *g* factor for two trigonal  $\text{Ti}^{3+}$  centers in  $\text{LaMgAl}_{11}\text{O}_{19}:\text{Ti}^{3+}$  crystal. *J. Appl. Phys.* **2007**, *101*, 113908(1–4).
- Zheng, W. C.; He, L.; Fang, W.; Liu, H. G. Theoretical studies of the optical band positions and spin-Hamiltonian parameters for  $\text{VO}^{2+}$  ions in  $\text{MgNH}_4\text{PO}_4 \cdot 6\text{H}_2\text{O}$  crystal from three microscopic methods. *Physica B* **2008**, *403*, 4171–4173.
- Rudowicz, C.; Yang, Z. Y.; Yeung, Y. Y.; Qin, J. Crystal field and microscopic spin Hamiltonians approach including spin-spin and spin-other-orbit interactions for  $d^2$  and  $d^8$  ions at low symmetry  $C_3$  symmetry sites:  $\text{V}^{3+}$  in  $\text{Al}_2\text{O}_3$ . *J. Phys. Chem. Solids* **2003**, *64*, 1419–1428.