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ABSTRACT By using the optical spectral parameters of (NiF6)
3� clusters in

KMgF3:Ni3þ and CsCaF3:Ni3þ crystals estimated from the observed values in

pure K3NiF6 crystal, the electron paramagnetic resonance (EPR) g factors for

KMgF3:Ni3þ and CsCaF3:Ni3þ are calculated from the second-order perturba-

tion formula (with the high-spin ground orbital state) based on the cluster

approach. The results are in reasonable agreement with the observed

values. The spin transition from the low-spin state in pure K3NiF6 crystal to

the high-spin state in KMgF3:Ni3þ and CsCaF3:Ni3þ crystals owing to the

slight increase of Ni3þ – F� distance is discussed.

KEYWORDS crystal- and ligand-field theory, CsCaF3, electron paramagnetic

resonance, KMgF3, Ni
3þ, spin transition

INTRODUCTION

In crystal theory, according to the Tanabe-Sugano diagram,[1] the ground

orbital state (which is related to optical spectra) for some 3dn ions in crystals

depends upon the ratio jDq=Bj (where Dq is the cubic field parameter and B

is the Racah parameter).[1–3] For example, for 3d7 ions in octahedral clusters,

when jDq=Bj> 2.2, the ground orbital state is the low-spin (S¼ 1=2) state
2E.[1,2] In this strong field case, the average EPR �gg factor is close to 2.[3,4]

Whereas if jDq=Bj< 2.2, the ground orbital state should be the high-spin

(S¼ 3=2) state 4T1(F);[1,2] the �gg factor in this weak field case is close to

13=3 (�4.33).[3,4] For an (NiF6)
3� cluster in pure K3NiF6 crystal, the optical

spectra studies suggested that Dq��1620 cm�1, B� 703 cm�1, and so

jDq=Bj � 2.3.[5] Thus, its ground orbital state is the low-spin 2E.[5] This point

was supported by the EPR experiments for (NiF6)
3� clusters in the pure crys-

tals K3NiF6, Na3NiF6, Cs2NaNiF6, Cs2KNiF6, and Rb2KNiF6.
[6] Considering that

the cubic field parameter Dq decreases by the relation Dq/R�n (where

n� 3.5� 6.5[7,8]), and the Racah parameter B increases slightly with

the increasing metal-ligand (e.g., Ni3þ – F� here) distance R because of the

decreasing covalence reduction effect,[9,10] the value of jDq=Bj for the

(NiF6)
3� clusters should decrease with the increase of distance R and

may be smaller than 2.2 in some systems. Thus, the ground orbital state

changes from the low-spin to high-spin state. For Ni3þ in cubic perovskites

KMgF3 and CsCaF3, since the ionic radii rh of the replaced host ions

Mg2þ (rh� 0.86 Å[11]) and Ca2þ (rh� 1.14 Å[11]) are larger than the radius
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ri (�0.74 Å in the high-spin state[11]) of the impurity

Ni3þ, the Ni3þ – F� distance R in the two crystals

should be larger than that in the pure crystal. Thus,

the values of jDq=Bj may be smaller than 2.2, and

the ground state may be of high spin. The observed

EPR g factors for Ni3þ in both crystals[12,13] support

this point. No theoretical calculations for these g

factors of Ni3þ in KMgF3 and CsCaF3 crystals were

made. In this article, these g factors are calculated

from the second-order perturbation formulas based

on the cluster approach. In the calculations, the

optical spectra parameters (Dq and B) are estimated

reasonably from those observed in pure K3NiF6

crystals and the above rules related to optical spectral

parameters Dq, B, and metal-ligand distance R.

The results are discussed.

CALCULATION

For 3d7 ions in a weak octahedral crystal field, the

ground orbital state 4T1(F) splits into three Kramers

doublets (J0 ¼ 5=2, 3=2, and 1=2). The lowest Kramers

doublet is j�1=2>.[4] Thus, considering the cova-

lency effect in 3dn clusters, the second-order pertur-

bation formula of a g factor based on the cluster

approach for 3d7 ions in cubic crystals can be

expressed as[14]

g ¼ 10

3
þ 2

3
kaþ 5k0f0e2

2DF
; ð1Þ

where k and k0 are the orbital reduction factors. f0

(and f) are the spin-orbit (SO) coupling parameters.

DF is the energy separation between the excited state
4T2(F) and the ground state 4T1(F), which can be

calculated from the optical spectra parameters. a is

the effective Lande factor and reads

a ¼ 3

2
e2 � s2; ð2Þ

in which the parameters e and s are related to the

interaction (or admixture) between 4T1(P) and
4T1(F) and can be obtained from the optical spectra

parameters by using the relationships[14]

e2 þ s2 ¼ 1;
s
e
¼ �4Dq

15B � 6Dq
: ð3Þ

According to the cluster approach, the parameters f,
f0, k, and k0 can be written as[14,15]

f ¼ Ntðf0
d þ k2

t f
0
p=2Þ;

f0 ¼
ffiffiffiffiffiffiffiffiffiffi

NtNe

p
ðf0

d þ k2
t f

0
p=2Þ;

k ¼ Nt ½1 � 2ktSdpðt2gÞ þ k2
t =2�;

k0 ¼
ffiffiffiffiffiffiffiffiffiffi

NtNe

p
½1 � ktSdpðt2gÞ � keSdpðegÞ � ktke=2�;

ð4Þ

where f0
d and f0

p are, respectively, the SO coupling

parameter of free 3dn ion and that of free ligand

ion. For the (NiF6)
3� clusters under study, f0

d

(Ni3þ)� 749 cm�1,[16] f0
p (F�)� 220 cm�1.[17] Sdp(c)

(c¼ t2g or eg) is the group overlap integral. Nc and

kc are the normalization coefficient and orbital mix-

ing coefficient in the linear combination of atomic

orbitals (LCAO) molecular orbital (MO). They can

be obtained from the normalization relation[14,18]

Nc ¼ ½1 � 2kcSdpðcÞ þ k2
c �
�1 ð5Þ

and the approximate condition[14,18]

fc � B=B0 ðor C=C0Þ � N 2
c ½1 þ k2

cS
2
dpðcÞ � 2kcSdpðcÞ�;

ð6Þ

where B0 and C0 are the Racah parameters of a free

3dn ion. For the free Ni3þ ion, we have B0�
1195 cm�1 and C0� 4808 cm�1.[16]

The integral Sdp(c) of a 3dn cluster can be calcul-

ated from the Slater-type self–consistent field (SCF)

functions[19,20] and the average metal-ligand distance

R. Generally speaking, for 3dn impurities in crystals,

the impurity-ligand distance R is different from the

corresponding distance RH in the host crystal because

of the size and=or charge mismatch. The impurity-

ligand distance R in crystals can be obtained by

analyzing the experimental (e.g., extended x–ray

absorption fine structure (EXAFS) and superhyper-

fine constant experiments[21]) data or by using the

theoretical calculations (e.g., using the embedded-

quantum-cluster approach[22] or a lattice relaxation

model[23,24]). For the studied KMgF3:Ni3þ and

CsCaF3:Ni3þ crystals, no such experimental and

theoretical studies were done. According to the

impurity-ligand distances R for Mn2þ in fluoroperovs-

kites derived from the experimental superhyperfine

constant As, EXAFS measurements and crystal-field

spectrum analysis,[21] an approximate formula

R � RH þ ðri � rhÞ=2 ð7Þ

L. He et al. 2
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is suggested in the estimation of the impurity-ligand

distance R in crystals.[25] So, it is applied here. From

the ri, rh given in the Introduction and RH� 1.994

and 2.262 Å[21] for KMgF3 and CsCaF3, respectively,

R� 1.934 and 2.062 Å are obtained for (NiF6)
3�

clusters inKMgF3:Ni3þ and CsCaF3:Ni3þ crystals. Thus,

the integrals Sdp(c) can be calculated. They are

Sdp(t2g)� 0.00728, Sdp(eg)� 0.02682 for KMgF3:Ni3þ

and Sdp(t2g)� 0.00547, Sdp(eg)� 0.02102 for CsCaF3:Ni3þ.

No optical spectra of (NiF6)
3� clusters in

KMgF3:Ni3þ and CsCaF3:Ni3þ crystals were reported.

We estimate reasonably the optical spectra para-

meters B, C, and Dq for both crystals from the optical

spectra parameters of K3NiF6 crystal[5] and the rules

mentioned in the Introduction. Thus, from the

Ni3þ – F� distances R in K3NiF6, KMgF3:Ni3þ, and

CsCaF3:Ni3þ (note: for the pure K3NiF6, considering

that the metal-ligand distance in pure crystal is

very close to the sum of ionic radii, it is taken

that R� 1.89 Å, where r(Ni3þ)� 0.70 Å in the low-

spin state and r(F�)� 1.19 Å[11]), we have Dq��
1410 cm�1, B� 708 cm�1, and hence, fc� 0.5925 for

KMgF3:Ni3þ and Dq��1280 cm�1, B� 715 cm�1,

and hence, fc� 0.5980 for CsCaF3:Ni3þ.

By using these optical spectra parameters for Ni3þ

in both crystals, the parameters e and s are calculated

from Eq. (3), and the MO coefficients Nc and kc are

obtained from Eqs. (5) and (6). Thus, the parameters

k, k0, and f0 can be calculated from Eq. (4). These

calculated results are shown in Table 1.

Applying the parameters in Table 1 to Eq. (1), the

g factors for Ni3þ ions in KMgF3 and CsCaF3 are

calculated. They are compared with the observed

values in Table 2.

DISCUSSION

In the above calculations, one can find that the

values jDq=Bj � 1.99 and 1.79 for Ni3þ ions in

KMgF3 and CsCaF3 crystals, respectively. Both

values are smaller than 2.2, and so the ground

orbital state of (NiF6)
3� clusters in the two crystals

is, as suggested in the Introduction, the high-spin

state rather than the low-spin state in K3NiF6 crys-

tal. So, although there may be small errors in the

estimated impurity-ligand distances in KMgF3:Ni3þ

and CsCaF3:Ni3þ crystals because of the application

of the approximate formula (i.e., Eq. (7)), the opti-

cal spectra parameters in the two crystals estimated

from those in pure K3NiF6 crystal, and these

distances are suitable. By using these parameters,

the g factors of KMgF3:Ni3þ and CsCaF3:Ni3þ

crystals are reasonably explained from the second-

order perturbation formula based on the cluster

approach for the high-spin 3d7 ions in cubic

symmetry (see Table 2).

It should be pointed out that in the crystal-field

theory, there are two theoretical methods—the com-

plete diagonalization (of energy matrix) method

(CDM)[26–29] and the perturbation theory method

(PTM),[26–29]—in the calculations of spin-Hamiltonian

parameters (including g factors) for 3dn ions in crys-

tals. Generally speaking, the PTM is simpler, and the

CDM can provide more exact calculated results of

spin-Hamiltonian parameters because it takes into

account the contributions from all 3dn excited

states.[26,27] However, for the g factors of 3dn ions

in crystals, the calculated results from both the

CDM and PTM are close to each other.[26–29]

Recently, a fuller CDM[27,30] was developed, in which

in addition to the SO interaction in the conversional

CDM, the spin-spin (SS) and spin-other-orbit (SOO)

interactions are considered in the CDM calculations

of spin-Hamiltonian parameters. Even so, the calcu-

lations for 3d8 and 3d2 ions in some crystals show

that the contributions to g factors from the SS,

SOO, and combined SO-SS-SOO interactions are

TABLE 1 Mixing Parameters e and s, MO Coefficients, Orbital Reduction Factors, and SO Coupling Parameters for Ni3þ in KMgF3 and

CsCaF3 Crystals

e s Nt Ne kt ke k k0 f0

KMgF3:Ni
3þ 0.9590 0.2835 0.7728 0.7814 0.5495 0.5564 0.8833 0.6436 604.5

CsCaF3:Ni
3þ 0.9634 0.2680 0.7758 0.7825 0.5430 0.5486 0.8856 0.6518 558.1

TABLE 2 EPR g Factors for Ni3þ in KMgF3 and CsCaF3 Crystals

KMgF3:Ni
3þ CsCaF3:Ni

3þ

Calculation 4.163 4.186

Experiment 4.163 (1)a 4.183b

aReference 12.
bReference 13.

3 g Factors of Ni3þ in KMgF3 and CsCaF3
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small.[27,30] So, the calculated g factors of KMgF3:Ni3þ

and CsCaF3:Ni3þ crystals using the simple PTM can

be regarded as reasonable.

CONCLUSION

The theoretical calculations from the second-order

perturbation formula (with the high-spin ground

orbital state) based on the cluster approach con-

firmed that the ground state of the (NiF6)
3� clusters

in KMgF3:Ni3þ and CsCaF3:Ni3þ crystals is the

high-spin 4T1(F) rather than the low-spin 2E in

K3NiF6 crystal. This spin transition from the low-spin

to the high-spin for (NiF6)
3� cluster is due to the

slight increase of Ni3þ – F� distance R.
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