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ABSTRACT By using the optical spectral parameters of (NiF¢)®~ clusters in
KMgFs:Ni®" and CsCaF5:Ni® " crystals estimated from the observed values in
pure K5NiFg crystal, the electron paramagnetic resonance (EPR) g factors for
KMgF5:Ni°" and CsCaFs:Ni°* are calculated from the second-order perturba-
tion formula (with the high-spin ground orbital state) based on the cluster
approach. The results are in reasonable agreement with the observed
values. The spin transition from the low-spin state in pure K;NiFg crystal to
the high-spin state in KMgF5:Ni®™ and CsCaFs5:Ni®t crystals owing to the
slight increase of Ni** — F~ distance is discussed.

KEYWORDS crystal- and ligand-field theory, CsCaFs, electron paramagnetic
resonance, KMgFs, Ni**, spin transition

INTRODUCTION

In crystal theory, according to the Tanabe-Sugano diagram,™ the ground
orbital state (which is related to optical spectra) for some 3d" ions in crystals
depends upon the ratio |Dg/B| (where Dq is the cubic field parameter and B
is the Racah parameter)."™ For example, for 3d” ions in octahedral clusters,
when |Dg/B| > 2.2, the ground orbital state is the low-spin (§=1/2) state
B2V In this strong field case, the average EPR g factor is close to 2,54
Whereas if |Dg/B| < 2.2, the ground orbital state should be the high-spin
(§=3/2) state () the g factor in this weak field case is close to
13/3 (~4.33).%% For an (NiF)®~ cluster in pure KsNiF, crystal, the optical
spectra studies suggested that Dg~—1620cm™', Ba~703cm™ ', and so
|Dgq/B| ~ 2.3 Thus, its ground orbital state is the low-spin “E.” This point
was supported by the EPR experiments for (NiF¢)®~ clusters in the pure crys-
tals K3NiFg, NasNiFg, Cs,NaNiFg, Cs,KNiFg, and szKNiF6.[6] Considering that
the cubic field parameter Dg decreases by the relation Dgox R™" (where
n~35~65"% and the Racah parameter B increases slightly with
the increasing metal-ligand (e.g., Ni** — F~ here) distance R because of the
decreasing covalence reduction effect,”'” the value of |Dg/B| for the
(NiF)®~ clusters should decrease with the increase of distance R and
may be smaller than 2.2 in some systems. Thus, the ground orbital state
changes from the low-spin to high-spin state. For Ni** in cubic perovskites
KMgF; and CsCaF;, since the ionic radii 7, of the replaced host ions
Mgz+ (Vh%0.86A[1H) and Ca*" (th1.14A[m) are larger than the radius
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r; (*0.74 A in the high-spin state!"") of the impurity
Ni°*, the Ni*" — F~ distance R in the two crystals
should be larger than that in the pure crystal. Thus,
the values of |Dg/B| may be smaller than 2.2, and
the ground state may be of high spin. The observed
EPR g factors for Ni*T in both crystals''*'¥ support
this point. No theoretical calculations for these g
factors of Ni°" in KMgF5 and CsCaF; crystals were
made. In this article, these g factors are calculated
from the second-order perturbation formulas based
on the cluster approach. In the calculations, the
optical spectra parameters (Dg and B) are estimated
reasonably from those observed in pure Kj3NiFg
crystals and the above rules related to optical spectral
parameters Dg, B, and metal-ligand distance R.
The results are discussed.

CALCULATION

For 3d” ions in a weak octahedral crystal field, the
ground orbital state “T;(F) splits into three Kramers
doublets (f =5/2,3/2, and 1/2). The lowest Kramers
doublet is |+1/2>."" Thus, considering the cova-
lency effect in 3d" clusters, the second-order pertur-
bation formula of a g factor based on the cluster
approach for 3d’” ions in cubic crystals can be
expressed as''¥

10 2 SK('e?

g:g"f—g/efx-i- 27, , (1)

where k and £ are the orbital reduction factors.
(and 0 are the spin-orbit (SO) coupling parameters.
Ay is the energy separation between the excited state
“T,(F) and the ground state “T,(F), which can be
calculated from the optical spectra parameters. o is
the effective Lande factor and reads

o= — 1% (2)

in which the parameters ¢ and t are related to the
interaction (or admixture) between “T;(P) and
“T1(F) and can be obtained from the optical spectra
parameters by using the relationships'*

T —4Dq

2 2
:1 -
crr=b T s eng (3)

According to the cluster approach, the parameters (,

¢ k, and ¥ can be written as''*!!

L. He et al.

(= NG+ 45/2),
= VNN + 275/2),
k= N1 = 228 4(tag) + 77/2],

k' = V/NiNe[1 — 2Sap(tag) — AeSap(€g) — Aihe /2],
(4)
0

where (; and (:2 are, respectively, the SO coupling
parameter of free 3d" ion and that of free ligand
ion. For the (NiFg)?~ clusters under study, (Y
(Ni**) ~ 749 cm ™~ 11O & FH~220em™ s,
(y =154 Or ey is the group overlap integral. N, and
/., are the normalization coefficient and orbital mix-
ing coefficient in the linear combination of atomic
orbitals (LCAO) molecular orbital (MO). They can

be obtained from the normalization relation'*'®
) -1
Ny = (1= 22,84(7) + 2] (5)
[14,18]

and the approximate condition
Jy ®B/By (or C/C) = NJ[1+ 2553,(2) = 22:8ap()],
(6)

where By and ¢ are the Racah parameters of a free
3d™ jon. For the free Ni°" jon, we have By~
1195cm ™! and €y~ 4808 cm .10

The integral S,,(y) of a 3d" cluster can be calcul-
ated from the Slater-type self—consistent field (SCF)

functions'**2"!

and the average metal-ligand distance
R. Generally speaking, for 3d" impurities in crystals,
the impurity-ligand distance R is different from the
corresponding distance Ry in the host crystal because
of the size and/or charge mismatch. The impurity-
ligand distance R in crystals can be obtained by
analyzing the experimental (e.g., extended x—ray
absorption fine structure (EXAFS) and superhyper-
fine constant experiments[2”) data or by using the
theoretical calculations (e.g., using the embedded-
quantum-cluster approach® or a lattice relaxation
model®*") For the studied KMgFsNi®" and
CsCaF3:Ni°" crystals, no such experimental and
theoretical studies were done. According to the
impurity-ligand distances R for Mn*" in fluoroperovs-
kites derived from the experimental superhyperfine
constant A;, EXAFS measurements and crystal-field

spectrum analysis,"*"!

an approximate formula
R%RH-F(?Q‘—’%)/Z (7)
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TABLE 1 Mixing Parameters ¢ and t, MO Coefficients, Orbital Reduction Factors, and SO Coupling Parameters for Ni** in KMgF; and

CsCaF; Crystals

& T N; Ne At Ae k K e
KMgF3:Ni*+ 0.9590 0.2835 0.7728 0.7814 0.5495 0.5564 0.8833 0.6436 604.5
CsCaF3:Ni+ 0.9634 0.2680 0.7758 0.7825 0.5430 0.5486 0.8856 0.6518 558.1
is suggested in the estimation of the impurity-ligand DISCUSSION

distance R in crystals.” So, it is applied here. From
the 7, 7, given in the Introduction and Ry~ 1.994
and 2.262 A" for KMgF5 and CsCaFs, respectively,
R~1.934 and 2.062A are obtained for (NiFy)>~
clusters in KMgF5:Ni® " and CsCaF5:Ni®" crystals. Thus,
the integrals S4(y) can be calculated. They are
Saptag) 0.00728, Syey) ~0.02682 for KMgFs:Ni®*
and S,(159) 2 0.00547, S(e,) ~ 0.02102 for CsCaF3:Ni**.

No optical spectra of (NiFg)®  clusters in
KMgF5:Ni®" and CsCaF5:Ni®" crystals were reported.
We estimate reasonably the optical spectra para-
meters B, C, and Dq for both crystals from the optical
spectra parameters of KsNiFy crystal”® and the rules
mentioned in the Introduction. Thus, from the
Ni®" — F~ distances R in KsNiFs, KMgF5:Ni°", and
CsCaF5:Ni°" (note: for the pure K3NiF;, considering
that the metal-ligand distance in pure crystal is
very close to the sum of ionic radii, it is taken
that R~1.89A, where "Ni>")~0.70A in the low-
spin state and (F)~1.19A") we have Dg~ —
1410cm™', B~ 708cm™, and hence, J;/~0.5925 for
KMgF5:Ni** and Dg~ —1280cm™', B~715cm™ ',
and hence, f,~0.5980 for CsCaF5:Ni°".

By using these optical spectra parameters for Ni*"
in both crystals, the parameters ¢ and 7 are calculated
from Eq. (3), and the MO coefficients N, and 4, are
obtained from Eqs. (5) and (6). Thus, the parameters
k, K, and {' can be calculated from Eq. (4). These
calculated results are shown in Table 1.

Applying the parameters in Table 1 to Eq. (1), the
g factors for Ni** jons in KMgF; and CsCaFs are
calculated. They are compared with the observed
values in Table 2.

TABLE 2 EPR gFactors for Ni** in KMgF; and CsCaF; Crystals

KMgF5:Ni®* CsCaF3:Ni*
Calculation 4.163 4.186
Experiment 4.163 (1)? 4.183%

“Reference 12.
bReference 13.

In the above calculations, one can find that the
values |Dg/B|~1.99 and 1.79 for Ni°" ions in
KMgF; and CsCaF; crystals, respectively. Both
values are smaller than 2.2, and so the ground
orbital state of (NiF¢)®~ clusters in the two crystals
is, as suggested in the Introduction, the high-spin
state rather than the low-spin state in K3NiFg crys-
tal. So, although there may be small errors in the
estimated impurity-ligand distances in KMgF5:Ni°"
and CsCaF3:Ni°" crystals because of the application
of the approximate formula (i.e., Eq. (7)), the opti-
cal spectra parameters in the two crystals estimated
from those in pure K;NiFgs crystal, and these
distances are suitable. By using these parameters,
the g factors of KMgFsNi®t and CsCaFs:Nio™
crystals are reasonably explained from the second-
order perturbation formula based on the cluster
approach for the high-spin 3d’ ions in cubic
symmetry (see Table 2).

It should be pointed out that in the crystal-field
theory, there are two theoretical methods—the com-
plete diagonalization (of energy matrix) method
(CDM)**? and the perturbation theory method
(PTM),**'_in the calculations of spin-Hamiltonian
parameters (including g factors) for 34" ions in crys-
tals. Generally speaking, the PTM is simpler, and the
CDM can provide more exact calculated results of
spin-Hamiltonian parameters because it takes into
account the contributions from all 3d” excited
states.”*?” However, for the g factors of 3d" ions
in crystals, the calculated results from both the
CDM and PTM are close to each other.?"
Recently, a fuller CDM'*"*% was developed, in which
in addition to the SO interaction in the conversional
CDM, the spin-spin (SS) and spin-other-orbit (SOO)
interactions are considered in the CDM calculations
of spin-Hamiltonian parameters. Even so, the calcu-
lations for 3d® and 3d” ions in some crystals show
that the contributions to g factors from the SS,
SOO, and combined SO-SS-SOO interactions are

g Factors of Ni** in KMgFs; and CsCaF;
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small.?73” So, the calculated g factors of KMgF5:Ni®™
and CsCaF5:Ni®" crystals using the simple PTM can
be regarded as reasonable.

CONCLUSION

The theoretical calculations from the second-order
perturbation formula (with the high-spin ground
orbital state) based on the cluster approach con-
firmed that the ground state of the (NiF(,)3 ~ clusters
in KMgF;:Ni°" and CsCaFy:Ni®" crystals is the
high-spin 4Tl(F) rather than the low-spin ’E in
K3NiF; crystal. This spin transition from the low-spin
to the high-spin for (NiFs)?~ cluster is due to the
slight increase of Ni*" — F~ distance R.
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